Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Audiol Neurootol ; 14(2): 98-105, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-18827480

RESUMO

KCNQ1 and KCNQ4 voltage-gated potassium channel subunits play key roles in hearing. Other members of the KCNQ family also encode slow, low voltage-activated K(+) M currents. We have previously reported the presence of M-like K(+) currents in sensory hair cells, and expression of Kcnq family genes in the cochlea. Here, we describe Kcnq2/3 gene expression and distribution of M channel subunits KCNQ2 and 3 in the cochlea. By using RT-PCR, we found expression of Kcnq2 in the modiolus and organ of Corti, while Kcnq3 expression was also detected in the cochlear lateral wall. Five alternative splice variants of the Kcnq2 gene, one of which has not been reported previously, were identified in the rat cochlea. KCNQ2 and KCNQ3 immunoreactivities were observed in spiral ganglion auditory neurons. In addition, the unmyelinated parts of the nerve fibers innervating hair cells and synaptic regions under hair cells showed KCNQ2 immunoreactivity. KCNQ3 immunoreactivity was also prominent in spiral ganglion satellite cells. These findings suggest that cochlear M channels play important roles in regulation of cellular excitability and maintenance of cochlear K(+) homeostasis in the auditory system.


Assuntos
Processamento Alternativo , Cóclea/fisiologia , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ3/genética , Proteínas do Tecido Nervoso/genética , Animais , Especificidade de Anticorpos , Expressão Gênica/fisiologia , Cobaias , Audição/fisiologia , Imuno-Histoquímica , Canal de Potássio KCNQ2/imunologia , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/imunologia , Canal de Potássio KCNQ3/metabolismo , Mamíferos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/imunologia , Proteínas do Tecido Nervoso/metabolismo , Ratos , Ratos Sprague-Dawley , Gânglio Espiral da Cóclea/fisiologia
2.
J Neurosci ; 26(10): 2599-613, 2006 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-16525039

RESUMO

KCNQ (KV7) potassium channels underlie subthreshold M-currents that stabilize the neuronal resting potential and prevent repetitive firing of action potentials. Here, antibodies against four different KCNQ2 and KCNQ3 polypeptide epitopes show these subunits concentrated at the axonal initial segment (AIS) and node of Ranvier. AIS concentration of KCNQ2 and KCNQ3, like that of voltage-gated sodium (NaV) channels, is abolished in ankyrin-G knock-out mice. A short motif, common to KCNQ2 and KCNQ3, mediates both in vivo ankyrin-G interaction and retention of the subunits at the AIS. This KCNQ2/KCNQ3 motif is nearly identical to the sequence on NaV alpha subunits that serves these functions. All identified NaV and KCNQ genes of worms, insects, and molluscs lack the ankyrin-G binding motif. In contrast, vertebrate orthologs of NaV alpha subunits, KCNQ2, and KCNQ3 (including from bony fish, birds, and mammals) all possess the motif. Thus, concerted ankyrin-G interaction with KCNQ and NaV channels appears to have arisen through convergent molecular evolution, after the division between invertebrate and vertebrate lineages, but before the appearance of the last common jawed vertebrate ancestor. This includes the historical period when myelin also evolved.


Assuntos
Anquirinas/fisiologia , Axônios/fisiologia , Canal de Potássio KCNQ2/fisiologia , Canal de Potássio KCNQ3/fisiologia , Neurônios/citologia , Canais de Sódio/fisiologia , Sequência de Aminoácidos , Animais , Anquirinas/deficiência , Evolução Biológica , Western Blotting/métodos , Células Cultivadas , Embrião de Mamíferos , Regulação da Expressão Gênica/fisiologia , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/citologia , Humanos , Imuno-Histoquímica/métodos , Indóis , Canal de Potássio KCNQ2/imunologia , Canal de Potássio KCNQ3/imunologia , Camundongos , Camundongos Knockout , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Moleculares , Biologia Molecular/métodos , Neurônios/fisiologia , Peptídeos/fisiologia , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Nós Neurofibrosos/metabolismo , Ratos , Fatores de Tempo , Transfecção/métodos
3.
J Physiol ; 573(Pt 1): 17-34, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16527853

RESUMO

Mutations that reduce the function of KCNQ2 channels cause neuronal hyperexcitability, manifested as epileptic seizures and myokymia. These channels are present in nodes of Ranvier in rat brain and nerve and have been proposed to mediate the slow nodal potassium current I(Ks). We have used immunocytochemistry, electrophysiology and pharmacology to test this hypothesis and to determine the contribution of KCNQ channels to nerve excitability in the rat. When myelinated nerve fibres of the sciatic nerve were examined by immunofluorescence microscopy using antibodies against KCNQ2 and KCNQ3, all nodes showed strong immunoreactivity for KCNQ2. The nodes of about half the small and intermediate sized fibres showed labelling for both KCNQ2 and KCNQ3, but nodes of large fibres were labelled by KCNQ2 antibodies only. In voltage-clamp experiments using large myelinated fibres, the selective KCNQ channel blockers XE991 (IC50 = 2.2 microm) and linopirdine (IC50 = 5.5 microm) completely inhibited I(Ks), as did TEA (IC50 = 0.22 mm). The KCNQ channel opener retigabine (10 microm) shifted the activation curve to more negative membrane potentials by -24 mV, thereby increasing I(Ks). In isotonic KCl 50% of I(Ks) was activated at -62 mV. The activation curve shifted to more positive potentials as [K+]o was reduced, so that the pharmacological and biophysical properties of I(Ks) were consistent with those of heterologously expressed homomeric KCNQ2 channels. The ability of XE991 to selectively block I(Ks) was further exploited to study I(Ks) function in vivo. In anaesthetized rats, the excitability of tail motor axons was indicated by the stimulus current required to elicit a 40% of maximal compound muscle action potential. XE991 (2.5 mg kg(-1) i.p.) eliminated all nerve excitability functions previously attributed to I(Ks): accommodation to 100 ms subthreshold depolarizing currents, the post-depolarization undershoot in excitability, and the late subexcitability after a single impulse or short trains of impulses. Due to reduced spike-frequency adaptation after XE991 treatment, 100 ms suprathreshold current injections generated long trains of action potentials. We conclude that the nodal I(Ks) current is mediated by KCNQ channels, which in large fibres of rat sciatic nerve appear to be KCNQ2 homomers.


Assuntos
Canal de Potássio KCNQ2/fisiologia , Canal de Potássio KCNQ3/fisiologia , Potássio/metabolismo , Nós Neurofibrosos/fisiologia , Potenciais de Ação/efeitos dos fármacos , Potenciais de Ação/fisiologia , Animais , Antracenos/farmacologia , Anticorpos , Imuno-Histoquímica , Canal de Potássio KCNQ2/imunologia , Canal de Potássio KCNQ3/imunologia , Masculino , Neurônios Motores/fisiologia , Neurônios Motores/ultraestrutura , Fibras Nervosas Mielinizadas/fisiologia , Técnicas de Patch-Clamp , Coelhos , Ratos , Ratos Wistar , Nervo Isquiático/citologia , Nervo Isquiático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...